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Structural establishment of polygalatenosides A and B by total synthesis
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Abstract

The first total synthesis of polygalatenosides A (1) and B (2), originally isolated from the traditional Chinese medicine and reported
as antidepressant agents, is described here. Glycosylation between thiogalactosyl donors 6 and 7 and 1-deoxyglucosyl acceptor 5 yielded
the corresponding key intermediates 10 and 16, respectively, with an a(1?2)-glycosidic linkage in moderate yields. In addition,
D-configuration of the galactoside residue in 1 and 2 was confirmed in our studies.
� 2008 Elsevier Ltd. All rights reserved.
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Polygalatenoside A (1): R1 = Bz, R2 = R3 = H
B (2): R1 = R2 = H, R3 = Bz
C : R1 = R3 = H, R2 = Bz
Current antidepressants possess certain therapeutic
actions for psychotic diseases, but most of them interacting
with multiple targets cause serious side effects such as di-
arrhea, anxiety, nausea, and even increase of suicidal
thoughts and behaviour.1 Therefore, the process of deveop-
ing safe and potent small molecules for new antidepressant
agents has received a lot of attention in medicinal and
pharmaceutical chemistry.2 Not surprisingly, due to the
less risk of side effects, the improvement of analytical tech-
niques, new bioassay developments, recent years isolation
and structure elucidation of bioactive components from
traditional Chinese medicine (TCM) for therapeutical pur-
pose have been demonstrated as attractive approaches for
new drug discovery.3 In TCM, Polygala tenuifolia Willde-
now is an important herb prescribed to mediate sedative,
antipsychotic, cognitive improving, neuron protective,
and anti-inflammatory therapeutic effects on the central
nervous system.4 Several biological interesting molecules,
such as xanthones, phenolic glycosides, and oligosaccha-
ride esters, from this plant have been reported.5 Signifi-
cantly, based on bioassay-guided isolation, Wu and his
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co-workers have identified five new oligosaccharide deriva-
tives from the roots of Polygala tenuifolia Willdenow.6

Among these oligosaccharides, polygalatenosides A (1)
and B (2) show potent and selective norepinephrine trans-
porter inhibitory activities, with IC50 values of 30.0 and
6.04 lM, respectively. In contrast, polygalatenosides C
has no inhibitory activity.6

From the structural point of view, compounds 1 and 2
feature the same disaccharide core structure, which consists
of a galactose and a 1-deoxyglucose, also named polygali-
tol or 1,5-anhydro-D-glucitol, with an a(1?2) linkage. The
subtle difference between 1 and 2 is a benzoate ester at the
C-3 or C-6 position of galactose, respectively (see Fig. 1).
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Fig. 1. Structures of polygalatenosides A, B, and C.
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Scheme 1. Preparation of 1-deoxyglucosyl acceptor 5.
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Scheme 2. Preparation of galactosyl donors 6 and 7.
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Interestingly, the monosaccharide-1-deoxyglucose has been
extensively investigated in carbohydrate metabolism. For
example, it can be a diagnostic biomarker for diabetes
mellitus.7 However, only few natural oligosaccharides
containing a 1-deoxyglucose moiety have been reported.8

Moreover, the configuration (L or D) of the galactoside
moiety in polygalatenosides A (1) and B (2) has not been
elucidated yet.6

One of our research interests is to synthesize or modify
bioactive small molecules and further study their structure–
activity relationships with disease-associated enzymes.9

Herein, we report the total synthesis of polygalatenosides
A (1) and B (2), as well as their linkage isomers. In addi-
tion, the configurations (L or D) of the galactose residue
in 1 and 2 are also assigned.

According to our retrosynthetic analysis illustrated in
Figure 2, a convergent approach was chosen that involved
the synthesis of the protected disaccharide cores 3 and 4,
which were prepared from thiogalactoside donors 6 and
7, respectively, with 1-deoxyglucosyl acceptor 5 via glycos-
ylation. A benzoyl group was conjugated at the C-6
hydroxyl group of galactose moiety in disaccharide 3 and
at the C-3 hydroxyl group of that in 4 before the removal
of all benzyl protecting groups. Due to no detailed infor-
mation about the configuration (D or L) of the galactose
moiety in 1 and 2, we decided to choose widespread natural
occurrence of D-galactose as our starting materials for
initial synthetic studies. For the preparation of 1-deoxy-
glycosyl acceptor 5, our synthetic effort started with the
commercially available D-glucal (8) followed by benzy-
lation, regioselective hydroboration, and the addition of
aqueous hydrogen peroxide to give 1,5-anhydro-3,4,6-tri-
O-benzyl-D-glucal (5) in high yield (74% yield overall from
8, Scheme 1).10
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Fig. 2. Retrosynthetic analysis of 1 and 2.
Synthesis of D-galactosyl donor 6 is shown in Scheme 2.
Selective silylation of the primary hydroxy group in thio-
galactoside 9, derived from D-galactose pentaacetate via a
well-known two-step process,11 followed by per-O-benzyl-
ation gave the desired donor 6 in 62% yield.12 Next, regio-
selective monoalkylation of 9 at the C-3 hydroxyl group
with p-methoxybenzyl chloride(PMBCl) by the Bu2SnO
method,13 followed by per-O-benzylation, provided galac-
tosyl donor 7 in 57% yield (Scheme 2).

With acceptor 5 as well as donors 6 and 7 in hand,
glycosylation between these acceptors and donors could
be explored. As shown in Scheme 3, the treatment of thio-
glycoside 6 with acceptor 5 in the presence of N-iodo-
succinimide and 0.1 equiv of TMSOTf (trimethylsilyl
trifluoromethanesulfonate) as an activator14 yielded two
corresponding disaccharides 10 (60%) and 11 (20%), which
were readily separated by silica gel column chromato-
graphy (elution solvent: 10% EtOAc in hexanes). The
stereochemistry of glycosidic linkages between two
disaccharides 10 and 11 was difficult to be directly distin-
guished by 1H NMR spectrum due to the signals overlap-
ping. Thus, to clarify and prove the structures of 10 and
11, further selective deprotection of the tert-butyldiphenyl-
silyl (TBDPS) group in 10 by treatment with tetra-n-butyl-
ammonium fluoride (TBAF)15 in THF gave disaccharide 3

(88%). Subsequent catalytic hydrogenolysis of 3 with Pd/C
in a THF/methanol solution (1:3) to remove all benzyl
groups furnished disaccharide 12 in 97% yield. Likewise,
disaccharide 13 was generated from 11 in 90% yield for
two steps. In the 1H NMR spectrum of 12, the smaller
coupling constant (3.4 Hz) of the anomeric proton at d
5.08 was characteristic for an a-glycosidic linkage. On the
other hand, the 1H NMR spectrum of isomer 13 showed
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Scheme 3. Synthesis of polygalatenoside A (1).
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the larger coupling constant (7.9 Hz) for the anomeric pro-
ton at d 4.5 ppm, indicating a b linkage of the glycosidic
bond in 13. These results encouraged us to directly synthe-
size our target molecule 1. After benzoylation at the C-6
hydroxyl group of the galactoside moiety in 3 and global
debenzylation under standard conditions, polygalatenoside
A (1)16 was successfully synthesized in 86% yield. Likewise,
the linkage isomer 1416 was prepared in 82% yield from 11

for three steps.
Our next attention was focused on the preparation of 2

and its linkage isomer 15, and the synthetic route is illus-
trated in Scheme 4. Glycosylation between acceptor 7

and donor 5 gave two corresponding disaccharides 16
(48%) and 17 (24%). Selective removal of PMB group in
16 was performed under DDQ oxidative conditions17 to
provide 4 (83%). Subsequent global debenzylation of 4

was carried out to give disaccharide 12, which was obvi-
ously confirmed as an a-glycosidic linkage by 1H NMR
spectroscopy. To prepare our target molecule 2, benzoyl-
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Scheme 4. Synthesis of polygalatenoside B (2).
ation of the C-3 hydroxy group of the galactoside moiety
in 4 and then global debenzylation smoothly furnished
polygalatenoside B (2)18 in 87% yield. Likewise, the b-link-
age isomer 1518 was prepared in high yield (88% yield over-
all from 17 for three steps, Fig. 3). It was noted that
benzoylated sugars 2 and15 were labile in aqueous med-
ium. Presumably, the benzoyl group in 2 and 15 was prone
to undergo acyl migrations.19 In contrast, compound 1 and
its linkage isomer 14 were stable under aqueous conditions.
To circumvent this problem, normal phase silica gel
column chromatography was employed with a MeOH/
CH2Cl2 mixture as elution solvent for purification. In addi-
tion, CD3OD was chosen as the solvent instead of D2O in
NMR experiments. These modifications gave us satis-
factory results.

To our delight, the NMR data and optical rotation val-
ues of 1 and 2 were all in good agreement with those
reported.6,16,18 Accordingly, D-configuration of the galact-
ose residue in 1 and 2 was confirmed.

In summary, we have successfully accomplished the first
total synthesis of polygalatenosides A (1) and B (2) via a
convergent and straightforward approach. Donor sugars
6 and 7 were prepared from D-galactose pentaacetate for
four steps in 57% and 53% yields, respectively; acceptor
sugar 5 was prepared from D-glucal in 74% yield for two
steps. This general synthetic strategy is able to introduce
various substituent esters at the C-3 or C-6 positions of
the galactose residue in this unique disaccharide core to
13: R = H
14: R = Bz
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Fig. 3. Structures of linkage isomer 13 and their derivatives 14 and 15.
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evaluate their biological activities. The further chemical
modifications and biological screening data will be
reported in due course.
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